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Abstract. This paper deals with finding the optimal measurement locations for a

structural system modelled by a single-degree-of-freedom oscillator, so that any one of the

parameters to be identified can be estimated with a minimum variance. The measurements

are assumed to be taken in a noisy environment, and the paper addresses both linear and

nonlinear, nonhysteretic systems. Besides the analytical relations deduced for the optimal

measurement locations, it is found that, in general, there may exist measurement locations

at which no additional information on the parameter under consideration is generated.

For the linear case, the optimal measurement locations are found to be independent of the

system response and the actual values of the parameters to be identified. They solely

depend on the nature of the excitation used in the identification procedure. Analytical

results relating to the optimal measurement locations for minimizing the sum of the

variances of the estimates of some of the parameters are also provided.

Introduction. The identification of parameters in dynamic models for building structural

systems is a field that is rapidly gaining importance [1-4], In this paper, we attempt to

study the optimal spacing of measurements for a structural system modelled by a

single-degree-of-freedom oscillator so that the variance of one of the parameters being

identified is minimized.

We start with a linear oscillator and, using Fourier transforms, derive a set a linear

algebraic equations. The condition on the measurement frequencies so that the estimated

variance (from noisy measurement data) of either the mass parameter, the stiffness

parameter or the damping parameter is minimal is derived analytically. It is also found

that there may exist a set of frequencies <o, at which no additional information on that

parameter is available, yielding no reduction in its estimated variance.

The determination of the optimal measurement frequencies depends solely on the

nature of the forcing function used in the identification procedure and is invariant with

respect to the actual values of the parameters being estimated.
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A numerical example is indicated to illustrate the analytically obtained results. The

method is then extended to find the optimal measurement times for structural systems

modelled by general nonlinear, second-order differential equations which represent mem-

oryless systems. It is shown, again, that a set of time points may exist at which

measurements, if made, will not yield additional information on the parameter of specific

concern.

Though the results obtained at this time are purely analytical, it is anticipated that they

will help in the design of experiments, especially where data handling and reduction are a

major cost concern.

Problem statement. Consider a structure modelled by a single-degree-of-freedom system

oscillator subjected to an excitation force q(t). If x is the displacement of such an

oscillator, then its equation of motion is

mx + cx + kx = q{t), jc(0) = 0, i(0) = 0, (1)

where the parameters m,c and k denote the mass, damping and stiffness respectivelyand

are assumed to be real numbers. Taking Fourier transforms, this yields

-mu2X(co) + icuX(oj) + kX{u) = Q(u), (2)

so that

l/X(u) = (-war + icu + k)/Q(u), u e Ia, (3)

where we shall assume that the division on both sides of equation (2) is possible i.e., there

exists an open interval, Ia, such that for all u e Ia, X(u) and (?(«) are not identically

zero.

We shall assume that the parameters m, k and c need to be identified, and we shall

direct our interest to finding if there exists a set of frequencies w,, i = 1,2,... such that

the variance of any one of the desired parameters (i.e.,m, or k or c) can be minimized by

using the data i.e., X(u) and Q( to) at those specific frequencies.

Relation (3) can be rewritten, after separating the real and imaginary parts, as

-«2/(") -ug(u) /(«)

-u2g( u) w/(w) g(w)
+

<Pk(")

(4)

(5)

U(a)

V(a)

where we have represented

\/X{u) = U(u) + /K(w),

1 /Q(u) =/(«) + ig(u),

and the measurements U(u) and V(u) are corrupted by measurement noise e^u) and

eK(w). Defining

[a7(w)] = a(w) = [-w2/(w) -«g(«) /(w)]T

and

[£,(«)] = b(w) = [-urg(w) w/(«) g(w)]T (6)



SPACING OF MEASUREMENTS OF STRUCTURAL SYSTEMS 265

for each value of co = w,, i = 1,2N, equation (4) can be written and the BLUE

estimator obtained. This can be expressed by the relation

z = HQ + e, (7)

where

z= [U(Ul)V(Ul)U(a2)V(U(ab)K(«J]t,

// = [a(w1)b(co1)a(£o2)b(co2) ■ ■ ■ a(w„)b(«„)]T,

£ = [e£/("i) ev(u2) ey(u2) ' ■ ■ ety(w„)e^(w„)]T. (8)

Assume that the error vector e has the statistic

£[e] = 0 and R = £(eeT) = diag(a2, a2, a2,... a„2, a„2), (9)

where a, = <x(w,), i = 1,2The covariance of the BLUE estimate of the vector 0

becomes [5]

P = (f/1/?-1#)-1. (10)

where P is a 3 X 3 matrix whose diagonal elements Pn, P22 and P33 are the variances in

the estimate of m,c and k respectively.

Optimal choice of frequencies, uk. We shall now attempt to choose the frequencies

uk e IQ in such a way that the z'th element of P, Pu, is minimized. To that end we first

differentiate relation (10) with respect to uk to yield

_9P_

so that

^r-h + htr^-htr-^r-h
ocok 0 cok 0 wk

bp. =_2
P~—R'1HP

d uk
+

PHTRl^-R~lHP

9 «>kuk

Assuming that a(co), b(a>) and a(w) are continuous functions in Ia.

(dHT/duk) = [0...0ft(«Jb(«4)0...0],

so that

dPr" = -^{^[^(w*)aT("*) + K"*)bT(w*)]/>}J
k Or

P, (11)

(12)

9w

+ 2a},Ukl [p[a(^)aT(co<r) + b(wit)bT(<oil)]p}).(.. (13a)

On expanding, equation (13a) becomes

o ̂  dP
y-g^f = ■-T,{Prj*j(ak)a,(ak)P,r+ PrM<>>k)bs(uk)Psr}

k j ,s

+ ̂ Pf(|EVj)! + (s,,.A)T <13b>
a(uk)



266 F. E. UDWADIA

The condition that Prr be extremal then yields

LPrjOji^k)
J

°("k)

E^,a,(«*) LPrAM
j

Zr.AM

Evj + Skarj J ] j

j j

(14)
= 0.

Lemma 1. If a real uk e Ia exists such that f(uk) and g(uk) are not zero, and for any

re [1,2,3],

EPsra,(uk) = 0, (15)

then,

^,Psrbs(uk) = 0 f°r ^at value of r, (16)
S

and vice versa.

Proof. Let us say that we have a sequence of u's, Wj, w2> • • • > uk> • • • > w/v> where for cjk

relation (15) is valid.

Using relations (8) and (10) we have,

N
P'x = E

s= 1

a(Wj)aT(w5) + b(«JbT(wJ

a2

so that

p-i

£ fe) 0. £ <q,2«2K)
5 = 1 °V2 ,-1 <*/

5=1

_ £ 0 £ «2K)
5=1 °s 5=1 °i2

(17)

where

«2(wJ =/2(wJ + g2(^). (18)

The determinant a of P'1 then becomes

V 2 2/ \ y 01 ("*) v («J
* = Lw5« ("5) • L —r~ L ;—

1 5=! 0/ J=1 0/

£ UW(Us)

a2
(19)

which by the Cauchy-Schwartz inequality is always > 0, as it should be, since P is a

covariance matrix. Thus the matrix P now becomes

P =

AB 0 B2

0 CA - B2 0

B2 0 BC

/a, (20)
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where

N 2/ \ N 2 2/

S=1 °s s = 1 0S

W 4 2/ \
c = £ ".a ("J

5=1

(21)

a = 5(^C - B2).

Noting relation (6), condition (15) becomes

f(ak)[-a2kA +5] =0, r=l,

-g(coj[«t(C4 -52)] =0, r = 2, (22a)

/(coj[-^2?+ C] =0, r=3.

Relation (16) yields

g("*)[-wiU + B] = 0' r = !.

/K)[<o,(C4 -52)] =0, r = 2, (22b)

s(uj[-co*2* + C] =0, r=3.

If g(uk) and f(uk) + 0 then the two sets of equations become identical, and the result

follows. □

Lemma 2.

and

ZPrjbj gK)

LPrjOj f(Uk) '

^Prjbj f(uk)

„ *0, r = l,3 (23)

* 0, r = 2. (24)
ZPrjOj g(uk) '

Proof. The proof follows from equations (22a) and (22b). □

Theorem 1. For a given forcing function Q(oj) and any r e {1,2,3}, there may exist

frequencies uk such that the inclusion of data at those frequencies does not yield any

improvement in the variance Prr of our estimate of parameter r. Specifically, when

o)k g Ia satisfies equation (15), u = uk is such a frequency.

Proof. Let us imagine that the measurements at the frequencies wl5 <o2,..., uk_1 have

been made and that with each measurement, the covariance matrix P is updated. After

making the k th measurement at to = uk, the updated covariance matrix becomes [5]

P + = p~- P~H?[Rk + HkP H?]-lHkP~, (25)

where

P denotes the covariance before the measurement at uk,

P+ denotes the covariance after the measurement at uk,

Hk denotes [a, b]T evaluated at uk, and

Rk = ak diag (1,1).
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Relation (25) can be rewritten using the notation

L = P-H7 (26)

as

P + =p--L[Rk + Hkp-H?]~1LT. (27)

Using relations (6) and (8), we have

IlP{jaj ZP{jbj

LPi-jOj LPi-jbj (28)L =

' LPyOj LPijbj

If relation (15) is valid for some r, then

!/»,;«>*) = = 0' (29)

and by relation (28)

Lrj = 0, j = 1,2, for that r. (30)

Consequently, from equation (27) we find

7 = 1,2,3. (31)

We note in passing, using relations (29) and (31),

= ZP^bj = 0. □ (32)

Corollary 1. For values of uk for which Y.Pr/aj(uk) = 0 (for r = 1, 3), the variance of

the estimate of the r th variable as well as its covariance are unaffected by the measure-

ment co = uk.

Proof. The result follows directly from relation (31). □

We note that the frequencies cok, which do not contain any further information (for any

given r), do not depend on the parameter values w, c and k. They are only governed by

the nature of the forcing function Q( w) and can be calculated before even the measure-

ments are made. They also do not depend on the measured responses.

Corollary 2a. If g(uk) * 0 and f(uk) + 0, there exists no uk e Ia except possibly

uk = 0 for which

= 0, (33)

provided the covariance matrix is nonsingular.

Proof. Referring to equations (22) for r = 2 and noting that AC - B2 # 0 because the

determinant of the covariance matrix is nonzero, the equations can only be satisfied by

uk = 0. □

Corollary 2b. If g(uk) =£ 0 and f(uk) + 0, there always exists an uk, uk e (0, oo), for

which Y.PrJcij{uk) = 0, r = 1,3.

Proof. We shall show the case for r = 1. Using relation (22a), u>2k = B/A. From

equation (21), B > 0 and A > 0. Thus uk = (B/A)l/2.

The proof for r = 3 follows along similar lines. □



SPACING OF MEASUREMENTS OF STRUCTURAL SYSTEMS 269

Theorem 2. The optimal locations for the measurements « = uk, uk e Ia, if they exist at

all, which minimize the variance in the estimates Prr, satisfy the following relations:

S(uk) ST n L t \
E PrA ('»k) E Ps A ( «* ) -

/(«*) ^ ' a(wJ
1 +

/("*)
IVi = °' '• = 1'3

(34a)

when f(uk) # 0. When f(uk) = 0, they satisfy the relation

°(«*)
LP,AK)-77^tI^A(«*) = 0, r=l,3 (34b)

Proof. Using equation (14) and Lemma 2, the result follows. A similar result can be

written for the cases when g(uk) i= 0 and g(uk) = 0 respectively. □

Equations (34a) and (34b) express the criteria for finding observation points uk such

that the mass m or the stiffness k can be optimally identified. We note that the optimal

location uk of the Ath observation point depends in general upon the location of all the

previous observation points as contained in Prj and Psr.

Theorem 3. The optimal locations for the measurements cj = uk, uk e Ia, if they exist at

all, which minimize the variance of the damping parameter c, satisfy the relation

_ 03k6(03k)

"(«*)
g2{"k) +/2("J] = 7777 U2(w) + /2(W)1L- (35)

du

Proof. Noting relation (14) and Lemma 2, the result follows. We assume that the

covariance matrix is strictly positive definite. □

Theorem 3 states that to optimally locate the A th measurement, relation (35) needs to

be satisfied. We note that in this case the optimal location of the /cth measurement does

not depend on the locations of the preceeding measurements and is purely controlled by

the nature of the graphs of f(u) and g(o>).

Next let us consider the problem of minimizing the sum of the variances of / out of the

3 parameters. Let i = 1,...,/ be these / parameters. Let A be the zero matrix whose

nth diagonal element is unity if n = st, i = 1,...,/, s, e (1,2,3). We then have the

following result.

Theorem 4. The frequencies uk e Ia which make

/

I^v /< 3, (36)
/= 1

extremal are given by the relation

aTK)PA
rW X 6(Uk) „ , X
p*(uk) ~

a( Uk)
+ bTK)PA

"("J
PbM-TT^PbM = o,

(37)

where A is the selection matrix as defined above.
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Proof. The extremal condition is given by

' Ks,
£ ^ = 0.
,=i

Using relation (13a) this becomes

/

E L { PjJ&j ( «* W «* ) ̂ «, + Pjj (Uk)bs(Uk) Pss,
I = 1 j,s

<K«a)
Ps,jaj(Uk)as(Uk)Pss, + Psjb,(uk)bs(«>k)ps!

= 0

from which the results follows. □

Corollary 3. The extremal values of trace(.P) are given by the relation

aT(uk)P2a(uk) + bT(uk)P2b(uk) = 0, (38)

when tr(w) = 0. This corresponds to R = a0diag(l, 1,..., 1).

Proof. For this case A = I and the result follows. □

Corollary 4. If either f(uk) or g(uk) is nonzero, then there exists no uk, uk > 0, for

which the vectors Pa(co^) and Pb{oJk) equal zero, provided P is nonsingular.

Proof. Noting that the vector Pa is proportional to

ff("k)[B ~ "IA \
g(tck)[B2-AC] .

(/K)[C-«^] J
where A, B and C are defined in relation (21), the result follows. The result for /Jb is

along the same lines.

Corollary 5. If I > 1, there exists no frequency uk, coA. e la, such that for f{uk) and

g(uk) nonzero and P nonsingular

APa = 0.

Proof. The result follows from Corollary 4 and relations (22). □

We note therefore that, in general, the data at each frequency provide information on m

and/or k.

Let *(o(39)

Numerical example.

0, t < 0,

e~*\ 0, £>0.

Then, /(to) = fi and g(u) = to. The vectors a and b become

a = \-u2J3 -co2/?]T,

and (40)

b = [-co3 co/8 co]T.
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Let us assume that measurements at to = Wj, to2,... ,uk_1 have been made and the next

measurement is to be taken at Let P denote the covariance matrix at the end of the

first (k — 1) measurements, and to, e [1, oo). Let o(u,) = <j0, Vi, so that d(to) = 0.

If uk is such that T.P3jaJ(uk) = 0, then no improvement in the variance of the stiffness

estimate can be expected by obtaining the additional measurement at to = uk. This

condition for the forcing function (39), after some algebra, implies

uk ~ [C'/B']1/2, (41)

where

c' = L "Hp2 + us) and B' = £ u2{p2 + u2)-
5 =1 5=1

For illustration, assume that k = 4 and ft = 1. If the first three measurements are taken

at to = 1 rad/sec., to = 2 rad/sec., to = 3 rad/sec., and Oj = a0, j = 1,2,3,4, then

.00648 0 .04274"
0 .0089 0

.,04274 0 .3405 .

B' = 112, C' = 892, and relation (41) gives w4 = 2.82 rad/sec. Thus a measurement at

u = 2.82 rad/sec. will yield no improvement of the covariance of the stiffness. In fact,

from Corollary 1 we know that P]j=Py,j= 1,2,3. Again if uk is such that EPljaj(uk)

= 0, then the new measurement will provide no additional information on the mass

parameter. After some algebra, we find that this relation gives

uk=(B'/A')X/2, (42)

where A' = L^z}(/82 + <*>?), and B' is as defined before. We then have P^ = P{j,

j = 1,2,3. For the example taken, A' = 17, and the value of uk satisfying (42) is 2.56

rad/sec.

For optimally locating the measurement to = uk so that Pn is minimized, equation

(34a) needs to be satisfied. This yields

-2ft2 E a2("J + 3u>{ £ a2(wj + £ uja2(us) = 0,
5=1 5=1 5=1

which simplifies to

2t4 + co£(4ft2 + 3A') + 2A'ft2 - B' + 2ft2 = 0. (43)

For to4 G [1, oo) in our example, relation (43) gives a value of 1.148 rads/sec.

Extensions to some nonlinear sdof-systems. In this section we extend the results

obtained dealing with the parameter identification of a linear system to nonlinear systems

that can be described by one degree of freedom. The proofs of all the results follow suit

from those of the previous section and therefore have been omitted. Here we shall work

directly in the time domain.

Consider a structure modelled by a nonlinear differential equation

mx + f(x,x) = q{t), x(0) = Jt(O) = 0, (46)
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where within a certain range of response the nonlinear term can be approximated by

f{x,x)=Y,PnmxV)xm{t). (47)
n ,m

The system is assumed to be nonhysteretic. Let us say that the response of the system is

measured at times t = tk, k = 1,2,..., t e (0, T), and that the aim is to locate the

instants t = tk when measurements should be made so that the data collected thereat

would yield the minimal variance of any one of the parameters m or fimn whose accurate

identification is required. We shall assume that x, x and x and their derivatives are

continuous functions of time for t e (0, T).

If the complete time histories x, x and x were available (actually they are not), then

equation (46) could be rewritten as

mzx(t) + cxz2(t) + c2z3(t) + ■■■ + cLzL + 1(t) = q(t), (48)

where the z's correspond to the corresponding time functions, L = m X n and the

coefficients fimn are assembled into a one-dimensional array c. Identification of the

parameter vector 0 = [m cT]T under noisy measurement conditions would lead to the

relations

q = m + B, (49)

where

q = [<7('i)?('2) " ' <7('at)]T>

H = [z(t1)z(t2) ■ ■ ■ z(r/+1)]T, z(t) = [z1(t)z2(t) ■ ■ ■ zi + 1(r)]T,

e = the zero-mean white measurement noise. (50)

The covariance of the estimate can be written, as before, as the (1 + mn) X (1 + mn)

matrix

P = (HJR-lH)~\ (51)

where R is the noise covariance matrix and is taken to be diag (of, a2, ■ ■ ■ 0%). Once again

the extremal condition for P with respect to a measurement instant tk can be expressed, as

before, by the relation

a P
2 91,
Jk

HPr,Z,(h) Y.PsrZs('k)
°(<k)

°('a)
EU =0, (52)

where z; is the 7th element of z. (We note that this result follows directly from equation

(14) if we set b to 0, a to z, and to tk.) We then have

Theorem 5. For a given forcing function and any re {1,2,..., mn + 1}, there may exist

times tk such that the inclusion of data at those times does not yield any improvement in

the variance Prr of our estimate of the rth parameter. Specifically, when for some

tk e (0, T)
mn = 1

E PrjZj(tk) = 0 (53)
j-1

is satisfied, then t = tk is such an instant.

Proof. The proof follows along the lines of Theorem 1. □
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Corollary 6. For values of tk for which T.PrjZj(tk) = 0, the variance of the estimate of

the r th variable as well as its cross-covariance is unaffected by the measurement at t = tk.

Proof. As before, the condition implies that

pr"j = prr j = 1,2,... mn + 1.

The proof follows, as did that of Corollary 1, from the proof of Theorem 5. □

Theorem 6. The optimal measurement times tk, tk e (0, T), if they exist at all, which

minimize the variance Prr satisfy the following relation

mn + 1 . / . \ mn + 1

L PsMh) = -77Y E PrjZj. (54)
5 = 1 °(tk) j- 1

Proof. The proof follows along the lines of Theorem 2. □

Theorem 7. The measurement times tk e (0, T) which cause

/

£ PS Si, I < mn + 1, (55)

i = i

to be extremal are given by the relation

tT(tk)P^Pi(tk) = ~\zJ(tk)PAPz(tk), (56)
a\h)

when A is the zero matrix whose nth diagonal element is 1 if n = .v,, i = I,.... I,

Si G (1,..., mn + 1).

Proof. The proof is exactly along the lines of Theorem 4. □

Theorem 8. If z(tk) is such that for a given set sjt i = 1,2, mn + 1,

APz(tk) = 0, (57)

then therre exist times tk e (0, T) such that TJi=lPss remains unaffected. In fact, Prs ,

r = 1,2,..., mn + 1, / = 1,2,...,/ remain unchanged by the new measurement at time

'a:■

Proof. The proof follows along the same lines as that of Theorem 1. □

Remarks and conclusions. In this paper we have tried to understand the optimal

measurement strategy for identifying the parameters of a single-degree-of-freedom dy-

namic system.

For a linear system, we have shown that, in general, data acquired at all frequencies, in

the inteval cok e Ia, do not equally enhance our knowledge of the parameters being

estimated. Specifically, one can often, given a data stream collected at frquencies

i = 1,2k — 1, forecast the next frequency at which data collection would be maxim-

ally beneficial to obtaining a more confident estimate of any one of the desired parame-

ters. Likewise, one can predict the frequency at which data collection would have no

influence on improving the uncertainty in our estimate of any desired parameter. It is

shown that for {w e Ia\f(u), g(u) # 0}, data at all the frequencies carry information

about the damping parameter c. Also as opposed to the optimal measurement location uk



274 F. E. UDWADIA

for identification of m and k, which do depend on the previous measurement locations

Uj, u2,...,o)k_1, the optimal locations for the identification of c do not depend on the

locations of the measurement stream. They are solely controlled by the nature of the

forcing functions used in the identification procedure.

Irrespective of which parameter is being identified, the optimal measurement locations

do not depend on the values of the parameters. It is noted that the solution of equations

(34) and (35) may not exist for any u belonging to the open interval IQ. For such

situations the optimal locations would have to be chosen as the end point(j) of the

interval. Also, it is observed that the optimal measurement locations do not depend on the

system output x(t). Thus the optimal locations can be calculated a priori to obtaining the

measurement stream. A numerical example has been included to illustrate the analytical

results obtained. Furthermore, analytical results relating to minimization of one or some

sum of the variances of the estimates are also provided.

The results are extended to nonhysteretic nonlinear oscillators when time data of

displacement, velocity and acceleration can be obtained for a given time-dependent

forcing function. It is shown that there may exist certain times tk at which measurements

provide no additional information regarding any one of the parameters desired to be most

accurately estimated. Similarly there exist times tk at which measurements provide

maximal information about a desired parameter. The relations that these times tk satisfy

in each of the two cases have been analytically deduced.

The results of this paper, it is hoped, will shed light on the manner in which

experimentation can be performed so that the amount of data handling and reduction

required could perhaps be significantly decreased in the dynamic testing of structural and

mechanical systems.
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